途创机电

致力于打造一体化解决方案

从通信网络实际能耗分布来看在整个通信网络能耗中通信主设备的能耗占总能耗的50%左右除主设备外

* 来源: * 作者: * 发表时间: 2020-10-12 5:11:46 * 浏览: 0

列间级精密空调批发比如,电压浪涌、切换瞬变、瞬态尖峰等电网环境下和油机状态下不建议采用ECO模式,负载设备谐波较严重的建议加装有源滤波器,等等需要强调的是,在采用ECO模式前,必须确定并机旁路均流,并机大于或等于2台设备的,均应安装均流电感。此外,IT负载对电源的适应能力一定要宽于切换条件,否则就会出现宕机问题。    实际案例证明,艾默生网络能源倡导的并机UPS系统ECO模式能够给客户带来显著的节能收益。在某改造项目中,艾默生网络能源成功为客户的两套(1+1)并机UPS系统组成的双母线供电系统进行了ECO模式改造,并在节能效果上完美达到了客户的预期目标。现场实测显示,在保证可靠性的基础上,供电系统在35%负载的情况下,节能性可以提高2%~3%,以此推算,一台400KVA的UPS系统一年可节省高达3万度的电能损耗,极大体现了并机UPS系统ECO模式在实际运行中的可行性和应用效果。    目前,艾默生网络能源已经为各领域众多客户的供电系统提供了ECO模式改造服务,以出色的实际效果,赢得了客户的一致好评。  。

厦门UPS电源基于重复控制的方法,可以理想地减少UPS电源输出波形总谐波含量,减少非线性负载及周期性*对输出波形的影响,从而整体极大地提高了系统转换效率。

厦门机房空调批发    艾默生网络能源:把握需求,突破创新    作为全球卓越的动力设备专家,艾默生网络能源始终关注各个领域的需求变化,并在满足用户需求过程中积极进行研发创新,引领着UPS市场的发展潮流针对小型应用场合不断涌现的特殊需求,艾默生网络能源依托深厚的技术研发实力和敏锐的产品开发意识,推出了GXE系列单相小功率UPS新品。该系列产品不仅体现了艾默生网络能源在小功率UPS的稳定性与可靠性方面的技术追求,而且以其效率高、体积小、管理便捷的非凡个性,体现了公司对小型应用场合应用需求的精准把握。    具体来讲,GXE系列单相小功率UPS采用纯在线式双变换技术以及全数字控制技术,更大提升了系统的稳定性和可靠性;体积更小、效率更高,采用突破性超紧凑、轻巧灵活的塔式设计,体积较同类型产品小30%—70%,具有更高功率密度,更适合小型场合的灵活应用;系统具备超强充电能力和过载能力,尤其能够满足客户突加负载的要求,可以有效抵制负载冲击。此外,该系列UPS采用LCD大屏显示,能够帮助用户轻松获取系统状态信息,方便运维管理。值得肯定的是,GXE系列单相小功率UPS具有突出的节能环保特性,效率高出同等产品3个百分点,满载下1K一天可节省近一度电,是一款名符其实的高性价比绿色不间断电源系统。    长期以来,艾默生网络能源凭借对市场发展趋势的深刻洞察以及对用户需求的准确把握,以超前的产品开发智慧和前沿技术,持续优化产品结构,不断开发出适应各行业发展以及各种场合应用所需要的产品和解决方案,有力地保障了用户核心业务的开展;同时,坚持“以客户为本”的理念,依靠强大的综合服务能力以及完善的售后服务体系,为用户提供优质的产品服务和技术支持,免除了客户在设备使用过程中的后顾之忧,逐渐成为各领域用户的品牌。  。

UPS不间断电源设计指导意见指出,全行业必须充分认识开展节能减排的重要性和紧迫性,加大科技创新和研发力度,提升绿色发展水平,促进通信业实现健康和可持续发展;到2015年年末,力争实现通信网全面应用节能减排技术,高能耗老旧设备基本淘汰,实现单位电信业务总量综合能耗较2010年年底下降10%    在通信产业链上下游积极贯彻国家节能减排政策,全面推动通信产业节能降耗工作稳步开展的关键阶段,该指导意见的出台,无疑会成为通信行业节能减排“战役”中的战斗檄文,激励产业链上下游团结协作,运用创新技术,全方位开辟节能途径,在行业内掀起新一轮节能减排的热潮。    电源应用:不容忽视的能耗单元    实现节能减排的目标,需要全方位地对通信网络进行绿色变革,更要把握其中的关键进行彻底革新改造。从通信网络实际能耗分布来看,在整个通信网络能耗中,通信主设备的能耗占总能耗的50%左右,除主设备外,温控系统和UPS电源损耗是能耗的关键部分。其中,UPS电源消耗作为降低能耗的主要内容,正成为通信行业节能减排的一个重要领域,受到了运营商以及电源设备供应商的重点关注。    随着网络规模的不断扩张,通信网络机房、基站建设等成倍增加,作为通信网络中保障电力安全的关键设备之一,UPS电源设备也随之相应地大量增加,成为通信网络运行中较大的能耗单元。从通信机房用电分配的比例上看,以UPS为主的电源系统耗电约占到机房总能耗的8%左右,并且UPS会产生电力谐波,对电力系统造成谐波污染,同时产生大量附加损耗。因此,从UPS着手构建一个安全、可靠、绿色、节能的供电环境,是实现通信网绿色化发展的重要环节。    目前,在挖掘通信电源系统节能潜力方面,除了寻求以太阳能为代表的替代能源之外,提高UPS电源系统能效,降低功能损耗,提升转换效率,程度地优化电源系统性能,也是一个降低能源消耗,达到通信业节能减排目标的切实有效的可靠途径。在此前提下,采用绿色、高效的UPS电源设备,已经成为运营商的迫切需求,同时也对相关电源设备厂商提出了更高要求    绿色电源:通信节能的选择    绿色、高效UPS电源的优势不仅仅局限于较低的自身损耗,还体现在降低通信运营商成本等诸多方面。比如,高效的电能转换和较低的热能释放使温控系统能耗也因此随之得到了大幅度降低;功率密度的大幅提升缩小了电源系统体积,使整个电源解决方案小型化易于实现。

厦门模块化机房多少钱    由于在电气化铁路电力机车通过时会产生过电压及谐波这样UPS的输入电源会时常出现很高的尖峰冲击电压整流以后的BUS电压也会跟着出现一个非正常的峰值电压这个电压有时高达700V高于正常正负BUS电压400V的标准监测保护系统一旦检测到高于正负BUS电压400V时设备就会保护关机这时需要人员去现场重新启动。    因此需在UPS输入侧加装滤波器滤掉谐波和峰值电压如图3所示。    150kVA高频单相变三相UPS自开通以后设备一直运行正常。但2012年12月份以后救援基地UPS频繁发生故障UPS不能正常开启。维修人员接到通知到达现场后发现UPS为停机状态待检查电源的接线是否正确整机外观是否有烧损输入电源是否正常并确认无误后对功率模块进行逐个清扫。现场采取单模块单独开机方式进行开机试验检测单个功率模块能否独立开启。经过测试现场有七个模块可以正常启动并投入运行其它三个模块不能正常开启其中一个没有电源输入其余两个有电源输入开机自检后无法正常启动没有电压输出。由于显示屏不能显示故障模块的故障信息无法判断具体的故障原因。为搞请UPS功率模块故障的原因作出分析如下。    2原因分析    (1)现场使用环境问题    太原机务段救援基地位于石太铁路线呜李车站UPS设备安装周围全部是裸露的土地起风时灰尘较大功率模块前后板有网状通风口现场的灰尘已经堵塞了功率模块的通风口的三分之一有的甚至堵塞了一半造成依靠风扇强制冷却的功率模块无法散热,检查发现功率模块电路板上存有大量灰尘由于通风口积灰导致防尘网堵塞。

通过在用户现场所捕捉到的输入故障波形以及在所搭建的故障模拟平台上所检测到数据可见:因“输入瞬态过压”而致使传统高频机和模块化UPS的典型故障类型有:因电池组异常放电所诱发的电池组使用寿命缩短,在UPS供配电系统的输出端发生输出闪断或“被损环”的事故其故障高发期是:    (a)当10KV高压因故发生停电/闪断事故时或位于这些UPS供电系统上游侧的大容量ATS开关因故需执行切换操作的瞬间。在此期间,在UPS的输入端出现“输入瞬态过压”故障的几率很高,    (b)为降低生产成本和充分利用廉价电能(注:夜间谷期电价仅为白天峰期电价的1/3左右),高能耗企业可能会采用夜间生产、白天停工的生产管理体制。对于地处邻近高能耗企业的数据中心而言,极易在高能耗企业“突然抽闸”的瞬间,在它的市电输入电网上诱发出”瞬态输入高压”。在此条件下,易发生电池组异常放电故障,从而造成电池组使用寿命缩短,增加后期运维成本。    李成章在演讲中以某数据中心的供配电系统故障为例,指出在该数据中心的运行中,因故遇到10KV高压电网发生停电几分钟的电力事故,导致运行仅1年多的3*300KVA高频UPS并机系统发生故障:UPS并机系统输出“闪断”,并长期停留在交流旁路上。与此同时,位于同一机房中的已运行十几年的另外两套3*800KVA工频机UPS并机系统却一直正常地运行着。由此不难看出:此次事故就是因传统高频机UPS抗“瞬态输入过压”的保护能力”变差”所诱发出的故障,给该数据中心所需的应持续稳定运行带来负面影响。    “电池组异常放电”的故障案例:对于同时配置有工频机UPS和传统高频机UPS的某数据中心而言,在其运行中,常发现:对于它的4*500KVA高频机UPS供电系统而言,在每天的早上的7∽8点期间,易发生”电池异常放电”现象。与此同时,对于位于同一10KV供电网下运行的4*400KVA工频机UPS供电系统,它却继续正常运行,从未发生过”电池组异常放电”的现象。    除此之外,李成章还举例指出:随着模块化UPS内部所并联的电源模块的数量的不断地增多(例:从传统高频塔式机的内置2-3个功率模块增加到传统模块化UPS的内置10-20个电源模块),它的“内部环流”必然会随之而增大。

对UPS而言,输入功率因数的高低表明其吸收电网有功功率的能力及对电网影响的程度降低电源的输入谐波,不但能改善UPS对电网的负载特性,减少给电网带来的严重污染,也能降低对其他网络设备的谐波干扰。已有许多UPS厂商推出的产品功率因数接近1,可限度地减少无功功率的消耗。2、高频化:相比传统的工频UPS,高频UPS采用功率因数校正和高频软开关技术,省去了工频电能转换环节,因此运行效率更高、对电网的谐波污染及无功消耗极小,完全能够满足国内外相关电力行业的标准要求。此外,高频电能变换装置在减小磁性部件体积和重量、降低制造成本、遏制运行噪音、节能环保等方面效果显著,因此越来越受到用户认可。3、大功率化、模块化:由于IT行业迅猛发展,数据中心的数据量也在以爆炸式的速度持续增长,随之而来功率消耗增大。UPS一方面朝着更大功率的方向发展,另一方面为应对不间断电源容量分期扩充的需求,产品模块化已是不可阻挡的趋势。更个性化的用户需求、更庞大的数据中心规模及更高的维护成本使得UPS已不再是单纯的不间断供电设备,针对不同行业领域的全套电源供应与管理解决方案才将倍受市场青睐。不间断电源工作原理当市电正常380Vac时,直流主回路有直流电压,供给DC-AC交流逆变器,输出稳定的220V或380Vac交流电压,同时市电经整流后对电池充电,当任何时候市电欠压或突然掉电,则由电池组通过隔离二极管开关向直流回路馈送电能,从电网供电到电池供电没有切换时间。当电池能量即将耗尽时,不间断电源发出声光报警,并在电池放电下限点停止逆变器工作,长鸣告警。不间断电源还有过载保护功能,当发生超载(150%负载)时,跳到旁路状态,并在负载正常时自动返回。

    不过,客观来讲,多模块型的代高频UPS在给用户的应用带来更多全新特性的同时,其技术研发上存在的一些短板,也给用户带来很大困扰,尤其是可靠性不足更成为代高频UPS的“硬伤”因此,针对代高频UPS在运行中面临的突出问题,迫切需要对产品的技术研发、设计理念进行全面的完善,以此满足用户对系统性能越来越高的应用要求。    传统高频UPS迫切需要升级换代    根据实践经验来看,提高数据中心供电系统的可利用率和节能降耗的运行特性,选用具有高可靠性和高效率的UPS产品是其能否成功的关键技术基础。那么,该如何衡量UPS的性能指标?对于这个关键问题,我认为,在IT/网络设备及其所采用的虚拟技术相对固定的条件下,需要从可靠、高效、易维护、易监测,这四个维度来综合判断UPS技术指标的优劣和产品性能的高低。    不可否认的是,在市场的检验下,高频化技术在UPS产品的应用越来越成熟已成为不争的事实。从技术层面而言,代高频UPS在提高效率方面,主要采取了两个技术措施,一是以升压型IGBT技术替换损耗较大的变压器,二是利用接触器取代逆变器输出端的SCR型静态开关。    事实证明,基于在技术层面的改进,的确可以通过应用高频UPS产品来提升运行效率,降低供电系统的损耗,从而达到节能降耗的目的。但是,值得注意的是,对于采取升压型的IGBT整流设计的代高频UPS而言,在获得效率提升等诸多优点的同时,也付出了故障率相对增高导致可靠性降低、使用寿命相对缩短的代价。究其原因,就是IGBT整流器的抗瞬态高压侵入的保护能力变差以及UPS并机功率模块的数量过多。    需要重点提及的是,由于同一机柜中并机功率模块的数量不断增多,不仅会导致“并机环流”问题更加突出,而且还会使得系统调控难度相对加大。同时,代高频UPS还有一个很重要的问题,就是如果电池组“带N线”还会存在更多故障隐患,进一步降低系统的可靠性。

随着数据中心的大规模建设能源利用效率越来越受到用户关注而整个数据中心里的用电大户一个是UPS和负载器另一个是制冷空调    如何利用能源降低运行成本?常规做法是通过“开源”、“节流”、“电价”三种手段:在源头把风光新能源接入不仅能享受发电收益、政府补贴还能起到节能减排的作用,通过提高终端设备和中间设备的效率来“节流”,用储能方式来削峰填谷包括电储能与蓄冷。    相比之下科华恒盛解决方案的特别之处是在“开源”环节接入风光新能源后采用直流总线并网,在“节流”环节提高中间设备效率采用高压直流供电,在“电价”环节通过削峰填谷的方式来储能。这三个环节的背后都是由数据中心智能微网供电系统来综合管理的。    2兼具刚需与储能功能    科华恒盛数据中心新能源智能微网供电解决方案的特点是刚需与储能并举。    首先作为储能应用的UPS须先扩容电池组让全电池组参与储能。电池容量的设计一定要保证60%作为储能来用剩余的40%作为UPS后备供电如此才能让电源充分满足用户的刚性用电需求。这套设计方案改造工程量小系统收益率高特别适用于数据中心、大型商业体。数据中心UPS储能解决方案如图1所示。    从技术层面上说在不同时段、不同状态下储能型UPS的运作方式有所不同。    在波谷时段例如22:00~次日6:00以后的用电量较小(不同地区的规定可能不一样下同)这个时段的电价相对较低。

UPS不间断电源系统的电力来源是电池,而电池的容量是有限的,因此不断电系统不会像市电一般无限制的供应,所以不论多大容量的不断电系统,在其满载的的状态下,其所供电的时间必定有限,若要延长放电时间,须购买长时间型不断电系统  3、旁路运行方式  当在线式UPS超载、旁路命令(手动或自动)、逆变器过热或机器故障,UPS一般将逆变输出转为旁路输出,即由市电直接供电。由于旁路时,UPS输出频率相位需与市电频率相位相同,因而采用锁相同步技术确保UPS输出与市电同步。旁路开关双向可控硅并联工作方式,解决了旁路切换时间问题,真正做到了不间断切换,控制电路复杂,一般应用在中大功率UPS上。如果在过载时,必须人为减少负载,否则旁路短路器会自动切断输出。  4、旁路维护方式  当UPS进行检修时,通过手动旁路保证负载设备的正常供电,当维修操作完成后,重新启动UPS,UPS转为正常运行。极低的维护率,MTTR为15万小时,极大地提高UPS不间断电源可用性。。