途创机电

致力于打造一体化解决方案

其中UPS电源消耗作为降低能耗的主要内容正成为通信行业节能减排的一个重要领域

* 来源: * 作者: * 发表时间: 2020-10-05 0:32:04 * 浏览: 0

厦门UPS电源多少钱EPS中的充电器通常采用高频开关电源技术实现,也有部分大功率的EPS采用了晶闸管相控整流型充电器    现介绍一种EPS专用的主回路休眠式短路保护智能型全自动充电器(已有专利)。目前许多充电器主回路短路保护都是截止型短路保护,重要场所特别是消防应急电源(EPS)不允许使用这类截止型短路保护的充电器。它一般均由电流检测电路、整形电路及触发封锁电路组成,这种短路保护有以下缺点:主回路必须先形成短路电流才会被检测到,然后再封锁主回路功率器件,这样主回路功率器件肯定已受到短路电流的冲击,对功率器件会带来一定的疲劳损伤,并会有累积效应产生。另外截止型短路保护电路在撤消短路后必须做人工复位才会从新起动充电器恢复工作,这是GB17945-2000消防应急电源对充电器最忌讳的。    本技术针对消防应急电源(EPS)及其它通用型后备应急电源而研制,主要是集光电隔离技术为一体的充电器输出回路短路阻抗检测电路。它的有益效果是在短路瞬间主回路功率器件并未形成短路电流就已被封锁关闭了,故功率器件不会受短路电流的冲击损伤,非常有利于功率器件的保护,同时又省去传统的人工复位。它是一种真正意义上的短路保护。    (2)蓄电池    蓄电池是EPS应急供电时的能量来源,是影响EPS可靠性的关键部件。目前EPS几乎均采用免维护阀控铅酸蓄电池,该电池技术成熟,价格较低,使用、维护简单,成为UPS和EPS的。关于免维护阀控铅酸蓄电池的特点与应用在本行业中已众所周知的,在此仅就其在EPS中应用时的几个特殊问题作一讨论。

数据机房维修此方案最早起源于后备式UPS设备后备式UPS在市电正常时采用市电直接为负载供电可以省去了UPS变换环节的损耗当市电停电或异常时则切换到UPS电池逆变回路保障供电    现在随着高压直流供电系统的发展一路市电+一路高压直流保障电源的供电方案逐渐兴起该供电方案既利用了市电无转换损耗直接为负载供电的特性又在保障电源侧由电池组直接为负载提供断电保障系统可用度比后备式UPS系统提高很多互联网公司已经在自用数据中心中小批量使用。    依据市电和保障电源的不同工作模式新的双路供电系统可分为两种工作模式:    ①工作模式一(均分模式):正常状态下市电电源与保障电源各负担服务器设备的50%负荷如任一路电源故障则另一路电源负担100%负荷,    ②工作模式二(主备模式):正常状态下市电负担服务器设备的100%负荷,保障电源处于热备状态,当市电发生故障时,则保障电源负担100%负荷。    依据系统架构新的双路供电系统可分为两种系统结构:    ①结构一:供电端为一路市电+一路UPS系统,    ②结构二:供电端为一路市电+一路高压直流系统系统受电端为双电源(一路直流型、一路交流型)服务器。    具体系统结构与技术演进见图2。    3双路供电系统效率分析    对于数据中心基础设施输入的是电能有效输出是计算设备所消耗的电能。数据中心的模型为一个电力系统其“总输入”是其从市电消耗的电能其“有效输出”是它用于计算的那部分电能这可以用提供给IT设备的电能来表示。目前数据中心服务器设备大多采用2N/2(N+1)UPS系统供电市电经变压器降压后经市油转换、低压配电、谐波治理后由UPS提供不间断电源再由PDU分配给IT设备每个环节都将造成电能的损耗其中的损耗发生在UPS环节和IT设备的电源模块部分。      (1)    依据式(1)提高数据中心效率的方法与供电系统相关的有两个方向:    ①提高电源设备(UPS类设备)转换效率减少其工作时的能耗,    ②提高IT设备电源侧的工作效率减少其工作时的能耗。    针对电源变换环节传统数据中心采用UPS双总线供电系统系统架构参见图3。每一路UPS系统均为并联冗余系统在实际应用中UPS并机系统并机的台数都不会太多一般1+1并联或者2+1并联情况居多。

厦门机柜级精密空调批发而在日常的使用过程中,为确保电源的使用寿命,同时满足自身需求,因而明确相关使用技巧,显得至关重要不间断电源的作用主要是针对计算机网络系统,在停电状态下,持续供电的作用,而且还可以防止数据丢失。而在日常的使用过程中,为确保电源的使用寿命,同时满足自身需求,因而明确相关使用技巧,显得至关重要。    、在进行使用时,应该要明确相关问题。如何才能延长不间断电源的供电时间,当前有两种方法,分别是外接大容量电池组,选购较大的电源系统。当然不同的解决方法,具体的操作技巧有所不同。当选择外接大容量电池组的方法时,需要明确具体供电时间,负载功率具体是多少,再选择相应的外接电池组。而在采用该方法时,会造成电池组充电时间相对增加。而采用选购较大的电源系统,相对而言可以减少维护成本。即便负载设备需要扩充,较大容量的不间断系统,也能正常运作。    第二、在进行开机操作时,应该要按照顺序合闸,储能电池开关,自动旁路开关,输出开关依次置于开启档。

厦门数据机柜批发这个立体仓库与柏克电力设备有限公司的商流、信息流、资金流、工作流联网,进行同步数据传输,机器****车****起托盘,把货物装上外运的载重运输车上,运输车开向出库大门,仓库中物的流动过程结束整个仓库实现了对物料的统一编码,使用了条形码技术、自动扫描技术和标准化的包装,没有一道环节会使流动的过程梗塞。    流程再造使原来表现为固态的、静止的、僵硬的业务过程变成了动态的、活跃的和柔性的业务流程。在柏克电力设备有限公司所谓库存物品,实际上成了在物流中流动著的、被不断配送到下一个环节的“物”。    【现代物流从根本上打破了企业自循环的封闭体系,建立了市场快速响应体系】    面对日趋激烈的市场竞争,现代企业要占领市场份额,就必须以最快的速度满足终端消费者多样化的个性需求。因此,柏克电力设备有限公司建立了一整套对市场的快速响应系统。一是建立网上定单管理平台。全部采购定单均由网上发出,供货商在网上查询库存,根据定单和库存情况及时补货,差旅费,物流公司与柏克电力设备有限公司一道共同面对终端消费者,以最快的速度、的质量、的价格供应原材料,提高了产品的竞争力。二是建立信息交流平台,供应商、销售商共享网上信息,保证了商流、物流、资金流的顺畅。集成化的信息平台,形成了企业内部的信息“高速公路”,架起了柏克电力设备有限公司与全国用户资源网、柏克电力设备有限公司物流成功地运用电子商务体系,大大缩短了与终端消费者的距离,为柏克公司赢得了响应市场的速度,扩大了柏克公司产品的市场份额。    【现代物流从根本上扭转了企业以单体参与市场竞争的局面,使通过全国供应链参与国际竞争成为可能】    进行流程再造时,围绕建立强有力的全国供应链网络体系,采取了一系列重大举措。

厦门UPS电源安装在实际应用中,工业用UPS需要面对工业生产场合中常见的灰尘、酸雾、高温、噪音、干燥或过湿等各种恶劣的环境条件,以及电波*、浪涌冲击、峰值下限等电网污染同时,工业用UPS所连接的负载多为电感性负载、电容性负载、波动和高峰值冲击性负载等,对电流的冲击大。基于工业生产特殊的环境场合,工业用UPS需要在可靠性、可用性、适应性,以及防护等级、带载能力等多个方面具有远远高于商业UPS的性能表现,来应对工业应用恶劣的物理环境、供电环境和负载环境的考验。  。

针对企业数据中心的不同需求科华恒盛进一步推出了数据中心光伏+储能UPS应用方案、高压直流型储能方案    数据中心光伏+储能UPS应用方案如图2所示它是在现有的储能UPS方案上增加了光伏即在白天光照的时候通过光伏控制器给蓄电池进行充电。    高压直流型储能方案如图3所示它打造了一个直流微网的方案通过高压直流给电池充电同时给设备供电。这套方案可以将光伏、风机无缝并到直流系统里面组成储能系统但是原有系统却无需改造。在电价波谷、波峰、平价时段HVDC/电池、太阳能、市电的工作模式如图4所示。    值得一提的是高压直流型储能方案采用了储能型铅碳电池该蓄电池是在铅碳基础上加入了一种超级电容的设计。将储能型铅碳电池与普通铅碳电池进行循环寿命的比较可以看到普通铅碳电池大概是440次储能型铅碳蓄电池可以达到3000多次。当放电深度为60%时储能型铅碳电池循环寿命大概是3000次因为设计的时候不能把蓄电池完全放完。    拥有28年高端电源研发经验的科华恒盛近年来在全国积极布局数据中心。2014年公司自建IDC北京亦庄一期有1000个机柜次年便增至4000个机柜,2015年公司与电信、腾讯、浪潮云服务等展开战略合作参与新型节能数据中心标准的建立构建云产业链生态,2016年公司在北上广深等核心城市持续拓展其中上海、广州两地数据中心投入运营年底全国至少将有15000个机柜交付客户实际使用上市。    到2017年科华恒盛还要继续扩大在一线城市的云计算中心的布局规划是到2018年底建成超过6万个机柜的规模。

    传统高频UPS迫切需要升级换代    根据实践经验来看,提高数据中心供电系统的可利用率和节能降耗的运行特性,选用具有高可靠性和高效率的UPS产品是其能否成功的关键技术基础那么,该如何衡量UPS的性能指标?对于这个关键问题,我认为,在IT/网络设备及其所采用的虚拟技术相对固定的条件下,需要从可靠、高效、易维护、易监测,这四个维度来综合判断UPS技术指标的优劣和产品性能的高低。    不可否认的是,在市场的检验下,高频化技术在UPS产品的应用越来越成熟已成为不争的事实。从技术层面而言,代高频UPS在提高效率方面,主要采取了两个技术措施,一是以升压型IGBT技术替换损耗较大的变压器,二是利用接触器取代逆变器输出端的SCR型静态开关。    事实证明,基于在技术层面的改进,的确可以通过应用高频UPS产品来提升运行效率,降低供电系统的损耗,从而达到节能降耗的目的。但是,值得注意的是,对于采取升压型的IGBT整流设计的代高频UPS而言,在获得效率提升等诸多优点的同时,也付出了故障率相对增高导致可靠性降低、使用寿命相对缩短的代价。究其原因,就是IGBT整流器的抗瞬态高压侵入的保护能力变差以及UPS并机功率模块的数量过多。    需要重点提及的是,由于同一机柜中并机功率模块的数量不断增多,不仅会导致“并机环流”问题更加突出,而且还会使得系统调控难度相对加大。同时,代高频UPS还有一个很重要的问题,就是如果电池组“带N线”还会存在更多故障隐患,进一步降低系统的可靠性。    针对代高频UPS产品在性能上存在的缺陷,应该采取什么应对策略?我认为,针对这些问题的有效解决方式,就是需要厂商针对代高频UPS的短板之处,在技术研发层面上予以针对性改进,促使产品进行升级换代,在“不牺牲可靠性”’的前提下,设计出效率尽可能高的第二代高频机。    多维度对比两代产品的性能优劣    目前,在第二代高频UPS的研发上,艾默生网络能源已经首开先河,以给用户提供更加稳定、可靠和高效的高频UPS产品为出发点,率先在市场上成功推出了Liebert?eXL大功率UPS,以针对性的研发设计解决了此前多模块型代高频UPS面临的问题,以新理念新技术颠覆了传统高频UPS形态,标志着高频UPS进入了2.0时代。

其故障高发期是:    (a)当10KV高压因故发生停电/闪断事故时或位于这些UPS供电系统上游侧的大容量ATS开关因故需执行切换操作的瞬间在此期间,在UPS的输入端出现“输入瞬态过压”故障的几率很高,    (b)为降低生产成本和充分利用廉价电能(注:夜间谷期电价仅为白天峰期电价的1/3左右),高能耗企业可能会采用夜间生产、白天停工的生产管理体制。对于地处邻近高能耗企业的数据中心而言,极易在高能耗企业“突然抽闸”的瞬间,在它的市电输入电网上诱发出”瞬态输入高压”。在此条件下,易发生电池组异常放电故障,从而造成电池组使用寿命缩短,增加后期运维成本。    李成章在演讲中以某数据中心的供配电系统故障为例,指出在该数据中心的运行中,因故遇到10KV高压电网发生停电几分钟的电力事故,导致运行仅1年多的3*300KVA高频UPS并机系统发生故障:UPS并机系统输出“闪断”,并长期停留在交流旁路上。与此同时,位于同一机房中的已运行十几年的另外两套3*800KVA工频机UPS并机系统却一直正常地运行着。由此不难看出:此次事故就是因传统高频机UPS抗“瞬态输入过压”的保护能力”变差”所诱发出的故障,给该数据中心所需的应持续稳定运行带来负面影响。    “电池组异常放电”的故障案例:对于同时配置有工频机UPS和传统高频机UPS的某数据中心而言,在其运行中,常发现:对于它的4*500KVA高频机UPS供电系统而言,在每天的早上的7∽8点期间,易发生”电池异常放电”现象。与此同时,对于位于同一10KV供电网下运行的4*400KVA工频机UPS供电系统,它却继续正常运行,从未发生过”电池组异常放电”的现象。    除此之外,李成章还举例指出:随着模块化UPS内部所并联的电源模块的数量的不断地增多(例:从传统高频塔式机的内置2-3个功率模块增加到传统模块化UPS的内置10-20个电源模块),它的“内部环流”必然会随之而增大。由此所带的新故障现象是:当用户在因故对这种模块化UPS执行停电维修操作之后(例:对机柜前面板上的“通风过滤罩”执行除尘清洗操作),再重新执行开机操作时,易发生UPS输出闪断或电源模块”被损坏”的事故。

更个性化的用户需求、更庞大的数据中心规模及更高的维护成本使得UPS已不再是单纯的不间断供电设备,针对不同行业领域的全套电源供应与管理解决方案才将倍受市场青睐不间断电源工作原理当市电正常380Vac时,直流主回路有直流电压,供给DC-AC交流逆变器,输出稳定的220V或380Vac交流电压,同时市电经整流后对电池充电,当任何时候市电欠压或突然掉电,则由电池组通过隔离二极管开关向直流回路馈送电能,从电网供电到电池供电没有切换时间。当电池能量即将耗尽时,不间断电源发出声光报警,并在电池放电下限点停止逆变器工作,长鸣告警。不间断电源还有过载保护功能,当发生超载(150%负载)时,跳到旁路状态,并在负载正常时自动返回。当发生严重超载(超过200%额定负载)时,不间断电源立即停止逆变器输出并跳到旁路状态,此时前面输入空气开关也可能跳闸。消除故障后,只要合上开关,重新开机即开始恢复工作。。

近年来,国内各大通信运营商纷纷响应国家号召,积极推进节能减排战略,制定节能减排计划,有针对性地实施各种节能降耗工程项目,在运行管理、技术创新等方面采取有效措施,以实际行动推进通信行业的绿色发展,并取得了显著成效var_bdhmProtocol=((”https:”==document.location.protocol)?”https://”:”http://”),document.write(unescape(”近年来,国内各大通信运营商纷纷响应国家号召,积极推进节能减排战略,制定节能减排计划,有针对性地实施各种节能降耗工程项目,在运行管理、技术创新等方面采取有效措施,以实际行动推进通信行业的绿色发展,并取得了显著成效。    日前,工业和信息化部发布《工业和信息化部关于进一步加强通信业节能减排工作的指导意见》。指导意见指出,全行业必须充分认识开展节能减排的重要性和紧迫性,加大科技创新和研发力度,提升绿色发展水平,促进通信业实现健康和可持续发展;到2015年年末,力争实现通信网全面应用节能减排技术,高能耗老旧设备基本淘汰,实现单位电信业务总量综合能耗较2010年年底下降10%。    在通信产业链上下游积极贯彻国家节能减排政策,全面推动通信产业节能降耗工作稳步开展的关键阶段,该指导意见的出台,无疑会成为通信行业节能减排“战役”中的战斗檄文,激励产业链上下游团结协作,运用创新技术,全方位开辟节能途径,在行业内掀起新一轮节能减排的热潮。    电源应用:不容忽视的能耗单元    实现节能减排的目标,需要全方位地对通信网络进行绿色变革,更要把握其中的关键进行彻底革新改造。从通信网络实际能耗分布来看,在整个通信网络能耗中,通信主设备的能耗占总能耗的50%左右,除主设备外,温控系统和UPS电源损耗是能耗的关键部分。其中,UPS电源消耗作为降低能耗的主要内容,正成为通信行业节能减排的一个重要领域,受到了运营商以及电源设备供应商的重点关注。    随着网络规模的不断扩张,通信网络机房、基站建设等成倍增加,作为通信网络中保障电力安全的关键设备之一,UPS电源设备也随之相应地大量增加,成为通信网络运行中较大的能耗单元。从通信机房用电分配的比例上看,以UPS为主的电源系统耗电约占到机房总能耗的8%左右,并且UPS会产生电力谐波,对电力系统造成谐波污染,同时产生大量附加损耗。因此,从UPS着手构建一个安全、可靠、绿色、节能的供电环境,是实现通信网绿色化发展的重要环节。