途创机电

致力于打造一体化解决方案

DSP控制系统产生高精度的参考电压信号外部电压有效值保证输出电压有效值在微小范围维持恒定山特...

* 来源: * 作者: * 发表时间: 2020-09-27 13:53:48 * 浏览: 9

列间级精密空调结果是测量UPS负极组充电器的输出电压,270V,恢复正常,然后测量正组充电器电压也正常270V,反复断电重启,仍然正常,这是意外收获问题得到解决,故障原因被确定为过多的灰尘。但是如何解释这种现象呢?想一想,UPS充电器输出电压检测反馈电路有大量电阻器和其他器件。如果灰尘可以导电并且充电器上的电阻器之间充满灰尘,则相当于并联原始电阻器。电阻器(灰尘的电阻)改变反馈回路中的电阻。错误的反馈信号会导致充电器输出错误的电压。输出为290V并不奇怪。[摘要]最初,除尘是顺便完成的,结果就是问题解决了。如何避免这些问题需要制造商和用户的共同努力。从制造商的角度来看,板上应喷涂三层防漆,以尽量减少灰尘造成的损坏,但这并没有解决问题,从用户的角度来看,必须提供一个UPS的清洁环境。要求。

机房空调哪家好32充电模块高频开关电源充电模块的主要功能是将交流电源变换为高质地的直流电源。模块由全波整流及滤波器、高频变换及高频变压器、高频整流滤波器等构成。模块内部应拥有监控功能,显示输出电压/电流值,能不依靠监控单元单独工作,应拥有守卫、报警功能,并可带电插拔替代及持有软启动功能。  该小区现有2台800kVA配变,要求功率因数达0。9以上。依照该用户的负载特征,选用MSC+TSC无功补偿安设、编码投切模式。思量到小区内电视机、电脑等设备较多,故在补偿回路中串联了0。5%的电抗器。通过计算每台变压器的补偿容量为270kvar,其中210kvar应用于三相共补,60kvar应用于三相分补。选取混补工程造价会有所改善,但该套补偿安装投入使用后,小区物业反映补偿效能显著。

厦门数据机柜价格选用的4.5kW服务器电源也是高效率的电源模块通过12V集中母排给服务器子机单元供电市电正常时直接给设备供电市电中断时靠锂电池短时间放电过渡直至柴油发电机起动承担全部负载。    (3)随着功率增加12V将不再适合于数据中心    从前面的两个案例可以看出不管是Google的12V带电池分布式小UPS供电方案还是微软的12V锂电池BBU半集中式供电方案都实现了市电直供近100%的供电效率。但12V电池要么直接挂在IT设备内要么就安装在服务器机柜内主要的目的都是为了尽量减少12V低压供电的传输损耗。谷歌12V分布式供电虽然12V传输损耗较小但电源和电池数量大、成本高、电源负载率、效率偏低,而微软的12V集中式供电的电源和电池数量少、成本稍低、负载率高、电源效率高但12V传输损耗大两者都存在一定不足。    随着业界IT机柜功率的不断增加以及对能效的更高要求12V低压传输损耗及成本会成为严重的限制。例如对于12kW的机柜如果采用12V集中单母线供电那么供电电流可以高达1000A假设电源插框和母线等的接触电阻为1mΩ仅接触电阻的损耗也会高达1kW若算上铜排上的大电流传输损耗及电源插框的电源转换效率损耗总损耗高达3~4kW。而采用较高电压的48V供电方案则可以大大降低传输及接触电阻损耗且48V电源的效率也比12V电源的效率高2%以上图11为两者损耗对比分析。采用12V集中供电方案机柜的总功率不宜超过6~8kW如果超过10kW以上传输及接触电阻损耗就会很大。而采用48V供电方案则没有这个问题整机柜的总功率可以高达30kW以上传输及。

厦门机房空调批发当然也有高端的采用其他充电方式,如定时自动进行循环充电方式、自动均充-浮充控制等,但在控制上略为复杂市电正常时,EPS中的充电器通常还需要为控制系统供电。充电器应具备高可靠性和良好的自保护功能,应能适应较宽的输入交流电压范围,以保证在各种恶劣供电环境中正常充电并为EPS的控制系统供电。因充电器功率较小,且多数时间内工作于轻载状态,其交流输入功率因数和谐波含量等指标并不十分重要。EPS中的充电器通常采用高频开关电源技术实现,也有部分大功率的EPS采用了晶闸管相控整流型充电器。    现介绍一种EPS专用的主回路休眠式短路保护智能型全自动充电器(已有专利)。目前许多充电器主回路短路保护都是截止型短路保护,重要场所特别是消防应急电源(EPS)不允许使用这类截止型短路保护的充电器。它一般均由电流检测电路、整形电路及触发封锁电路组成,这种短路保护有以下缺点:主回路必须先形成短路电流才会被检测到,然后再封锁主回路功率器件,这样主回路功率器件肯定已受到短路电流的冲击,对功率器件会带来一定的疲劳损伤,并会有累积效应产生。另外截止型短路保护电路在撤消短路后必须做人工复位才会从新起动充电器恢复工作,这是GB17945-2000消防应急电源对充电器最忌讳的。    本技术针对消防应急电源(EPS)及其它通用型后备应急电源而研制,主要是集光电隔离技术为一体的充电器输出回路短路阻抗检测电路。它的有益效果是在短路瞬间主回路功率器件并未形成短路电流就已被封锁关闭了,故功率器件不会受短路电流的冲击损伤,非常有利于功率器件的保护,同时又省去传统的人工复位。

厦门数据机房安装所以灰尘本身和它吸收的潮气会腐蚀PCB板及元器件空气中存在着大量悬浮污染物一旦进入模块内就会吸附在线路板上形成肉眼能够发现和不能够发现的带电灰尘。随着时间的推移线路板上吸附的灰尘越来越多影响电气间隙和爬电距离值引起绝缘性降低和接触不良如果湿度偏高严重时会造成电路板短路。    (2)UPS所带负载问题    经现场检查发现2012年12月基地将原来使用市电的采暖锅炉用电接入了UPS系统。中铁工程设计咨询集团太原设计院在救援基地UPS设计、技术图纸交底及定货时都没有设计采暖锅炉用电容量采暖锅炉继续使用原市电电源。因市电电源不稳定停电频繁2012年底机务段为了用电方便将原来用市电供电的采暖锅炉电源改接到了UPS上。由于采暖锅炉开机时起动冲击电流较大(电机的起动电流是电机额定电流的6~7倍)UPS是电力电子设备要满足采暖锅炉用电要求UPS容量应是采暖锅炉额定容量的3~4倍。救援基地UPS频繁发生功率模块烧损故障其原因就是采暖锅炉起动冲击较大所引起。    (3)制冷问题    箱变设计时虽然设计安装了制冷空调但安装的空调为民用空调空调在停电停机后再来电不能自动起机。因太原机务段救援基地使用的电气化铁道专用UPS其输入电源从电气化铁道的接触网上接引接触网每天要停电90min进行设备检修作业接触网停电制冷空调自动停机再来电时制冷空调不能自动开机因检修工区距离基地几十公里所以造成制冷空调不能正常运转这也是造成UPS故障的一个重要原因。    3解决方法    ①为了减少单相变三相UPS的故障应加强对UPS的巡视和清扫每月应对UPS进风口除尘网和出风口进行清扫每半年对每一个功率模块打开外壳用吹风机对电路板进行清扫确保通风良好防止因电路板发热引起保护动作及电路板因污染造成短路故障。

    DSP主要功能:    最通常的功能:滤波简单地说,滤波就是对信号进行处理,以改善其特性。例如,滤波可以从信号里清除噪声或静电*,从而改善其信噪比。    DSP控制系统产生高精度的参考电压信号,外部电压有效值保证输出电压有效值在微小范围维持恒定,山特UPS电源滤波器电容的电流和电压瞬时值控制提高了系统的动态特性,使得山特UPS电源输出电压能较快地跟踪参考电压信号。基于重复控制的方法,可以理想地减少UPS电源输出波形总谐波含量,减少非线性负载及周期性*对输出波形的影响,从而整体极大地提高了系统转换效率。。

文章介绍了数据中心市电主用+高压直流热备供电方案的产生的背景分析了该混合供电系统的效率模型说明了交直流混供方案中系统效率是由市电+高压直流供电系统和IT设备电源模块两部分效率共同构成包含高压直流电源的空载功耗配电损耗IT设备电源模块效率与电源模块负载率等多种因素在不同的工作模式及电源模块负载率情况下整个供电系统的工作效率与双路供电的负载分配比例相关在电源模块空载效率低于1.5%情况下建议采用市电负担100%高压直流热备的工作模式在此模式下整个供电系统处于工作效率。现有数据中心主要通过UPS系统为服务器设备供电为保证系统的可靠性通常采用了2N甚至2(N+1)的UPS双总线系统架构为双电源服务器提供两路独立供电电源。正常情况下服务器内的两个电源按均分负载模式工作各自负担服务器的50%工作负荷。目前数据中心计算能效指标例如PUE等时基本没有考虑服务器设备自身的电源转换损耗因此服务器电源的节能工作一直没有提到数据中心节能管理的目标体系里。    随着数据中心技术的大规模建设数据中心供电系统的主要发展目标是在降低电源系统投资成本的同时提高电源供电效率减少后期运营成本。    1数据中心供电现状分析    数据中心安装的服务器设备中使用两个或两个以上的电源模块同时为服务器负载供电负载的总负荷不大于其中一半电源模块的额定容量一般把这种电源系统成为冗余电源系统。冗余电源系统多采用输入总线、负载总线和共享总线的“三总线”的电路结构。电源1、电源2…电源n为热插拔电源模块它们以并联方式相连接C1、C2…Cn为各电源模块的控制模块S1、S2…Sn为受控电流调节器/隔离器。具体供电结构如图1所示。    系统正常工作时控制模块通过调整电流调节器/隔离器的导通程度使系统均衡地使用每个电源模块既每个电源模块向系统提供相同的电流这种工作模式称为“电流共享”,或者控制受控电流调节器/隔离器使得某一组电源工作另一组电源处于热备份。

当然不同的解决方法,具体的操作技巧有所不同当选择外接大容量电池组的方法时,需要明确具体供电时间,负载功率具体是多少,再选择相应的外接电池组。而在采用该方法时,会造成电池组充电时间相对增加。而采用选购较大的电源系统,相对而言可以减少维护成本。即便负载设备需要扩充,较大容量的不间断系统,也能正常运作。    第二、在进行开机操作时,应该要按照顺序合闸,储能电池开关,自动旁路开关,输出开关依次置于开启档。而在按下面板开启键时,电源系统会慢慢启动,而在此时,对于广大用户来说,应仔细观察指示灯变化情况。    第三、在日常开关机过程中,只需要按下开启键,大约二十分钟左右,就可以开启其它仪器使用。当电源启动进入稳定工作状态后,才能打开负载设备电源开关。而在此时,还应该要明确,电源在正常运行下,手动维护开关时,应呈关闭状态。  。

    中国科学院计算所高级工程师李成章先生    对此,中国科学院计算所高级工程师李成章在《数据中心供配电系统的可用性分级管理》的演讲中,深入探讨了高性价比的数据中心供配电解决方案追求的核心价值,并指出要根据数据中心的不同用户对可靠性、效率、成本的不同业务需求来选择最适合的UPS产品及其对应的供配电系统的可用性级别和架构,从而获得的TCO    诱发数据中心供配电系统故障的几大因素    在造成数据中心瘫痪的原因中,以因供配电系统的产品选型和设计架构的”考虑欠妥”所诱发的电气瘫痪的危害性。相关的统计资料显示,它存在如下几种典型的故障隐患:(1)因UPS供电系统的产品或可用性级别的”选配欠妥”所诱发的故障占29%,    (2)因人为操作“失误”所诱发的故障占24%(例:2017年5月因托管机房的工程师对UPS供配系统的输入开关执行”误关断”操作而致使某国外航空公司的几乎所有的IT设备进入”宕机瘫痪”的事故),    (3)因未考虑到发电机带电容性负载的带载能力会“变弱“以及因阶跃性负载的“负载突增量过大”等原因所诱发的发电机“自动关机”的故障占10%,    (4)因气候及自然灾害所诱发的故障占12%(例:2017年12月,国外某机场因电力电缆的火灾所造成的长达十余小时的大面积停电事故)。    显而易见,能否消除掉上述的、足以对供配电系统的安全运行造成“致命危害”的故障隐患是能否确保该数据中心机房能长期可靠地运行的关键所在,以便为在后期的机房的日常运维操作过程中,能够及时地发现和规避这些风险、确保它能获得令人满意的可用性(99.99%∽99.999%)奠定下坚实的技术基础。根据GB50174—2017数据中心设计规范的要求,对于负责向IT/网络等关键设备供电的供配电系统而言,它所允许的瞬间供电中断时间应小于10ms。    通过对近年来发生在数据中心供配电系统中的多起事故的分析发现:同工频机UPS供配电系统相比,导致传统高频机UPS和模块化UPS供配电系统的故障率增高的重要诱因是:因为它们的抗瞬态输入过压保护的能力“变差“所致。通过在用户现场所捕捉到的输入故障波形以及在所搭建的故障模拟平台上所检测到数据可见:因“输入瞬态过压”而致使传统高频机和模块化UPS的典型故障类型有:因电池组异常放电所诱发的电池组使用寿命缩短,在UPS供配电系统的输出端发生输出闪断或“被损环”的事故。其故障高发期是:    (a)当10KV高压因故发生停电/闪断事故时或位于这些UPS供电系统上游侧的大容量ATS开关因故需执行切换操作的瞬间。在此期间,在UPS的输入端出现“输入瞬态过压”故障的几率很高,    (b)为降低生产成本和充分利用廉价电能(注:夜间谷期电价仅为白天峰期电价的1/3左右),高能耗企业可能会采用夜间生产、白天停工的生产管理体制。对于地处邻近高能耗企业的数据中心而言,极易在高能耗企业“突然抽闸”的瞬间,在它的市电输入电网上诱发出”瞬态输入高压”。在此条件下,易发生电池组异常放电故障,从而造成电池组使用寿命缩短,增加后期运维成本。

中兄治病其在毫毛故名不出于闾若扁鹊者血脉投毒药副肌肤闲而名出闻于诸侯。”    华为UPS具有业界最优防雷技术、全面冗余设计、重要元件裕量设计、三防漆浸涂防护技术、风扇容错设计实现UPS的病未有形而除之,华为UPS具备电容、风扇、电池失效预警、电池节数可调、分级下电等功能治UPS病于病情初起之时,华为UPS的故障定位、模块更换及时解决UPS重大故障,华为UPS的设计理念来源于《黄帝内经》可比肩扁鹊三兄弟乃机房必备之选。    作者简介    厉群长沙泰和英杰系统集成工程有限责任公司董事长具有近三十年机房产品的从业经验对华为、APC、艾默生、伊顿、台达等厂商的UPS均进行过深入研究。  。